

Contents lists available at ScienceDirect

Pathology - Research and Practice

journal homepage: www.elsevier.com/locate/prp

Review

Beyond typical histology of *BAP1*-inactivated melanocytoma[★]

Michele Donati ^{a,b,*}, Dmitry V. Kazakov ^c

^b Department of Pathology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy

^c IDP Dermatohistopathologie Institut, Pathologie Institut Enge, Zurich, Switzerland

A Clonal Evolution Model

B Hierarchical Cancer Stem Cell Model

Multinucleation

Where do multinucleated melanocytes come from and what do they mean?

BRAF^{V600E} mutation

BRAF^{V600E} mutation

Accumulation of DNA damage (ROS+++)

BRAFV600E mutation

Accumulation of DNA damage (ROS+++)

Oncogene-induced senescence (OIS)/telomere dysfunction-associated senescence (TDIS)

BRAFV600E mutation

Accumulation of DNA damage (ROS+++)

Oncogene-induced senescence (OIS)/telomere dysfunction-associated senescence (TDIS)

Activation of p16/pRB and p53/p21 tumor suppressor pathways

BRAFV600E mutation

Accumulation of DNA damage (ROS+++)

Oncogene-induced senescence (OIS)/telomere dysfunction-associated senescence (TDIS)

Activation of p16/pRB and p53/p21 tumor suppressor pathways

G1-like/G2 tetraploid state following a failed mitosis (mitotic slippage)

BRAF^{V600E} mutation

Accumulation of DNA damage (ROS +++)

Oncogene-induced senescence (OIS)/telomere dysfunction-associated senescence (TDIS)

Activation of p16/pRB and p53/p21 tumor suppressor pathways

G1-like/G2 tetraploid state following a failed mitosis (mitotic slippage)

Formation of multinucleated proliferation-arrested senescent cells

Multinucleated melanocytes in conventional nevus

Endoreplication cell cycle

Endoreplication in human megakaryocytes

Table 2Selected histological features in 50 *BAP1*-inactivated melanocytomas.

Histological features	Cases (%)
Nuclear blebbing	49 (98%)
Nucear budding	4 9 (98%)
Micronuclei	40 (80%)
Multinucleated cells	49 (98%)
Cytoplamic vacuolization	35 (70%)
Nuclear pseudoinclusions	28 (56%)

Table 2Selected histological features in 50 *BAP1*-inactivated melanocytomas.

Histological features	Cases (%)
27 1 11 11 1	40 (000/)
Nucear budding	49 (98%)
Micronaciei	1 0 (00 /0)
Multinucleated cells	49 (98%)
Cytoplamic vacuolization	35 (70%)
Nuclear pseudoinclusions	28 (56%)

Table 2Selected histological features in 50 *BAP1*-inactivated melanocytomas.

Histological features	Cases (%)
Nuclear blebbing	49 (98%)
Micronuclei	40 (80%)
manumucicatea ecits	12 (2070)
Cytoplamic vacuolization	35 (70%)
Nuclear pseudoinclusions	28 (56%)

Table 2Selected histological features in 50 *BAP1*-inactivated melanocytomas.

Histological features	Cases (%)
Nuclear blebbing	49 (98%)
Nucear budding	49 (98%)
Multinucleated cells	49 (98%)
Nuclear pseudoinclusions	28 (56%)

Table 2Selected histological features in 50 *BAP1*-inactivated melanocytomas.

Histological features	Cases (%)
Nuclear blebbing	49 (98%)
Nucear budding	49 (98%)
Micronuclei	40 (80%)
1. 1. 1 11 *****************************	12 (20%)
Cytoplamic vacuolization	35 (70%)
Nuclear pseudomerusions	ZO (3070)

BRAF^{V600E+} Melanocytes

1) Oncogenic driver mutation

CONVENTIONAL MELANOCYTIC NEVUS

Clonal expansion through mitosis

BRAF^{V600E+} Melanocytes

2) Oncegene induced senescence (OIS)

CONVENTIONAL MELANOCYTIC NEVUS

Clonal expansion through mitosis

SENESCENT CONVENTINAL MELANOCYTIC NEVUS

Proliferation arrest

CONVENTIONAL MELANOCYTIC NEVUS

Clonal expansion through mitosis

2) Oncegene induced senescence (OIS)

BRAF^{V600E+} Melanocytes

SENESCENT CONVENTINAL MELANOCYTIC NEVUS

Proliferation arrest

BRAF^{V600E+}/ BAP1^{loss} Melanocytes

3) Second molecular event (BAP1-inactivation)

Endocycling/endoreplication
Polyploidization
Global transcription reprogramming

BAP1-INACTIVATED MELANOCYTOMAFurther accumulation of DNA damage
Enhanced shift to endoreplication

www.nature.com/cddis

In vitro evidence for senescent multinucleated melanocytes as a source for tumor-initiating cells

C Leikam¹, AL Hufnagel¹, C Otto², DJ Murphy³, B Mühling², S Kneitz¹, I Nanda⁴, M Schmid⁴, TU Wagner¹, S Haferkamp⁵, E-B Bröcker⁶, M Schartl^{1,7} and S Meierjohann*^{1,7}

Oncogenic signaling in melanocytes results in oncogene-induced senescence (OIS), a stable cell-cycle arrest frequently characterized by a bi- or multinuclear phenotype that is considered as a barrier to cancer progression. However, the long-sustained conviction that senescence is a truly irreversible process has recently been challenged. Still, it is not known whether cells driven into OIS can progress to cancer and thereby pose a potential threat. Here, we show that prolonged expression of the melanoma oncogene N-RAS^{61K} in pigment cells overcomes OIS by triggering the emergence of tumor-initiating mononucleated stem-like cells from senescent cells. This progeny is dedifferentiated, highly proliferative, anoikis-resistant and induces fast growing, metastatic tumors. Our data describe that differentiated cells, which are driven into senescence by an oncogene, use this senescence state as trigger for tumor transformation, giving rise to highly aggressive tumor-initiating cells. These observations provide the first experimental *in vitro* evidence for the evasion of OIS on the cellular level and ensuing transformation.

Cell Death and Disease (2015) 6, e1711; doi:10.1038/cddis.2015.71; published online 2 April 2015

ELSEVIER

Contents lists available at ScienceDirect

Seminars in Cancer Biology

journal homepage: www.elsevier.com/locate/semcancer

Review

The "life code": A theory that unifies the human life cycle and the origin of human tumors

Jinsong Liu

Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, United States

Morphological features related to endoreplication

Endocycling

Endomitosis

Polyploid multinucleated cell life cycle

Díaz-Carballo et al. A Distinct Oncogenerative Multinucleated Cancer Cell Serves as a Source of Stemness and Tumor Heterogeneity. Cancer Res. 2018 May 1;78(9):2318-2331. doi: 10.1158/0008-5472.CAN-17-1861.

Other suggested mechanisms to polyploidy and multinucleation

- Outer cell internalizing inner cell
- Tumor cell with a crescent-shaped nucleus containing another cell
- 'Bird's-eye cells' morphology

ENTOSIS

Simultaneous asymmetric cytokinesis

POLYPLOID MULTINUCLEATED CELLS

Capability of self-renewal

Stemness

Source of tumor heterogeneity

Observed in several tumors

Resistance to conventional treatment

Admixture (K)

TIME LAPS

Díaz-Carballo et al. Cancer Res. 2018 May 1;78(9):2318-2331. doi: 10.1158/0008-5472.CAN-17-1861.

Polyploid multinucleated cells unify the two models

Thanks for your attention

